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Abstract - Summary 

A Government SaaS that addresses a diverse set of stakeholders and multiple levels of user groups is much 

more complicated and technically challenging than a Private SaaS application that is often focused on a niche 

homogenous user base. The Non functional requirements (NFRs) of such a Government SaaS are hence very 

critical and important.  

Defining the NFRs of Government SaaS independent of the functional requirements has many benefits. It 

leads to a focused effort on NFRs, a robust architectural framework, engineering excellence and consistency. 

The NFR stack when implemented as a loosely coupled framework, could also become a common stack for 

multiple Government SaaS applications, resulting in significant reduction in cost of development, support 

and maintenance (TCO). 

Context 

SaaS refers to the delivery of Software (to its users) through a “Software as a Service” Model, wherein the 

various stakeholders using the application simply use it from an Internet Browser, without having to own and 

manage the hardware and software infrastructure required for it.  

The SaaS provider owns the software and is responsible for its uptime and availability. The SaaS provider is 

also responsible for providing the necessary functional and non-functional features required in the 

application, and continuously enhance them as per the requirements of the users and stakeholders. 

The application could be hosted on-premise in a hardware exclusively owned by the SaaS provider or it could 

be hosted on a secure Private or Government Cloud. 

Government SaaS : 

In this case, the SaaS provider is the Government. The actual responsibility of development and management 

of the application could have been assigned to either a government agency or an external private vendor. 

The customers using this SaaS could be other government departments, implementation agencies, 

outsourced vendors and would include citizens who have to interact with the Government through the SaaS 

application. 

Functional Vs Non Functional Requirements (NFRs) 

While building any application, the focus is often on the Functional requirements. These are capabilities and 

features that the users expect from the application. The functional requirements could vary from one group 

of users to the other and from one domain to the other. There can be multiple applications and multiple 

modules within an application to cater to various usage scenarios. 
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However, there are non-functional requirements for any application, many of which are latent and implicit. 

Some of the NFRs could be so common sense, one might wonder, whether it is really required to explicitly 

articulate it. 

In the context of SaaS and more importantly Government SaaS, the NFRs are not only important, but critical 

for its successful deployment, implementation and usage. Let us see why? 

Why NFRs are more important and critical in Government SaaS? 

Let us take a simple example of “Performance Management” of Government Staff. It is a horizontal 

application that is needed by almost all parts of the Government, but the functional requirements of each 

division, department, agency and vendor will have overlapping commonalities as well as unique variations. 

Trying to build, maintain and support a customized system for each group is costly. At the same time, a 

standard application cannot be forced on everyone. 

So how to build and deliver a common software system in the SaaS mode, while still retaining the flexibility 

required to configure and customize to suit different user groups, is itself a Non functional Requirement. The 

need for this capability is more pronounced and critical in a Government SaaS than in Private SaaS. A private 

SaaS provider can focus on a niche consumer segment with homogenous requirements. A Government SaaS  

on the contrary has to work in a diverse environment but needs to be developed, deployed and maintained 

within tight budgets. 

Like Customizability, there are many other NFRs (such as Cloud ready architecture, Scalability and Security) 

which are more critical in Government SaaS than in a Private SaaS.  

1.0  True Multi-tenancy at the Application level 

The technologies associated with SaaS and Cloud provide substantial savings to the SaaS provider as well as 

its customers, only if it is designed and architected as a Multi-tenant application with a single code base. 

Using Single tenant architecture with a separate server instance running for each customer / tenant could be 

a quick way to go-to-market. However this approach might work for some niche scenarios or a stop-gap 

arrangement but cannot be a permanent solution for Government SaaS.  

A multi-tenant application, does not become multi-tenant, just by sharing the underlying hardware 

infrastructure or database software. For example, creating separate schema for each customer on a single 

database server and customizing the data model to the unique requirements of each customer is an easy 

way out. But the objective is not just to save on hardware costs and licensing costs, but to ensure scalability 

and maintainability at low cost. 
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So multi-tenancy in the context of computing infrastructure (where multiple customers / tenants share the 

same infrastructure pool) is different from multi-tenancy at the application level. A multi-tenant application 

has a single code base that can be configured and customized for multiple tenants. 

1.1  Who is a Tenant in Government SaaS? 

A tenant in the context of Private SaaS, is usually a customer organization that pays and uses the SaaS 

provided by the SaaS provider. 

 A Tenant in the context of Government SaaS could be any set of users grouped together by common and 

homogenous needs. The tenant (User Group) could be set up and managed independent of other tenants. 

The application could also be customized and configured to suit the requirements of each tenant.  

2.0  Scalability 

2.1  Data Connection Abstraction 

In today’s world, tying your code to any specific database is no longer accepted. Databases could be scaled 

out – partitioned vertically or horizontally as they grow.  The data partitioning should be configurable during 

run-time. So it is important to abstract the data connection and pass all the Data access through an 

intelligent Multi-tenant DAL layer. This layer would do the connection string management during run time, 

based on the context of the user / tenant and based on the tenant configuration templates. 

2.2  Data Isolation 

Each tenant’s data could be stored in a separate database, or in a shared database with separate schema  / 

tables or in a fully shared table with a tenant ID.  In all these cases the data model should be same for all 

tenants. (Customization of data model is discussed separately in a forthcoming section) 

Developers should write code and queries as if they are writing for a single tenant. The intelligent Multi-

tenant DAL layer should insert the tenant context during run time. This ensures that one tenant’s data does 

not get mixed up with another tenant’s data because of a developer’s mistake. 

2.3  Distributed Caching and Stateless Design 

The NFR stack should use Distributed Caching and Stateless design, so that depending on the usage load, the 

server instances can be scaled up or down, without affecting user experience. By using a Load balancer and 

theoretically unlimited no. of Server instances, the application should be scalable to any no. of concurrent 

users. 

3.0  Customizability and Configurability by Non IT Personnel 

Customizability does not mean, that scripts and dedicated code are written and plugged in by IT personnel to 

meet the needs for each tenant.  The aim should be to allow Power Users (Tenant level Administrators) to  
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customize and configure the application to suit the requirements of their User Group, without having to 

depend on internal or external IT Staff. These admin screens should be accessible through a normal browser. 

Customization and configuration should be supported for the following : 

3.1  Themes and Logos 

Each tenant should be configurable with their own Logos and Color Themes. All the UI screens in the 

application should reflect this. 

3.2  Associating CSS files to Tenants 

Many a times, the requirements of a particular tenant could be such that, changing the logo and the color 

scheme alone is not sufficient. The entire layout of the application pages and the graphical images used in 

them might have to be customized. The application should allow Power uses to create, or select from 

uploaded CSS files and associate them with individual tenants or for a set of tenants. 

3.3  Forms and Grids 

Display names / Column headings used in each form / grid, the order in which the fields / columns appear, 

the visibility / hide condition, whether the field is mandatory or not all these need to be customized by a 

power user. This feature may not be required for all forms and grids in the application, but will be required in 

at-least some of them. 

3.4  Data model extension 

When a tenant customizes the application to add one or more custom fields to an entity, the transaction 

database should not be disturbed. The extension fields should be stored separately in a separate table / 

database as key value pairs along with tenant ID and entity ID.  

Data model extension should be possible through an administration GUI screen which will be used by Power 

users who have the necessary rights and privileges to do this. 

While fetching data or saving data on an entity, the extension fields should automatically get appended 

depending on the context of the user and tenant. 

Unlimited no. of custom fields should be supported for each entity. However certain entities that may not 

require customization can be excluded completely. (Data model extension feature will be disabled for those 

entities) 

3.4.1  Custom fields on Forms and Grids 

The power user should be able to add the custom fields (created using data model extension) in to any form 

or grid that uses the entity. 
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3.4.2  Custom fields on Queries and Reports 

While creating Queries and reports that can be customized by a tenant, the power user should be able to 

view and include custom fields associated with that tenant. 

3.4.3  Custom fields on Business Rules and Workflows 

While customizing business rules and workflows, the power user should be able to view and include custom 

fields associated with that tenant, as part of the rule / work flow set up. 

3.5  Business Rules Customization 

Hard coding of business rules or using developer centric tools such as Microsoft Workflow Foundation is 

acceptable only for those scenarios where there is no end user level customization needed. But if there is a 

need to allow power users to customize certain business rules through the GUI, then we need to include an 

additional Business rule engine as part of the NFR. This engine will allow the developers to specify the 

business logic, variables, and other parameters during development and also expose them to the GUI for a 

power user to configure and customize. While such an engine should be used only for end user customizable 

scenarios, it should interoperate with other developer centric tools for more complex requirements. 

3.6  Workflow Customization 

This is similar to BR Customization. The developers should write the domain specific activities that are 

required in the application and expose these activities to a Workflow Designer. The GUI based workflow 

designer will be used by Power users to configure the sequence of activities with parallel and branching 

trees. The power users will also set up the start – stop and other conditions required for the execution of the 

workflow. The workflow steps could be manual or automatic. Manual steps will advance depending on the 

status returned from user driven activities. Automatic steps will advance once the business logic within them 

is executed.   

The workflow customized by each tenant should be stored as meta data. During run time, the workflow 

engine, should load the appropriate version depending on the context of the tenant and execute the same. 

Multiple workflows should be capable of running at the same time. Some of the workflow activities could be 

background jobs that can be scheduled and scaled out independent of the application. 

3.7  Report Customization 

3.7.1 Canned reports could be customized by tenants to change column headings, hide / show certain 

columns and add tenant specific custom fields if necessary. 

3.7.2 Power users should be able to create Adhoc queries using a GUI based Query builder. They can drag 

and drop fields from entities that have been exposed to this tool during development. While doing this, 

tenant specific custom fields should be automatically shown in the respective entities.  
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3.7.3 The rights / privileges and data scope policies defined in the Access Control System should be 

enforced during Adhoc queries / reports, so that what users see is automatically filtered to match their data 

access privileges. 

3.7.4 A Report / Chart designer could help power users to create their own reports and charts using 

queries created with the Adhoc Query builder.  

3.8  Notification Template Customization 

The notification templates used for each tenant should be customized through the UI so that the power user 

can set it up to suit the tenant organization. 

4.0  Configurable Access Control System 

Different tenants (User groups) might want to follow different policies on Access Control with respect to the 

data and features provided in the application. CRUD privileges related to database entities, named privileges 

associated to each entity, privileges defined at the field level, page level, service level and feature level – all 

these have to be configured for each tenant and user. 

During development, the developer should focus on privileges and demand them when necessary. The roles 

and users could be set up during run time. 

4.1  Tenant specific roles and role – privilege mapping  

Tenants should be able to create custom roles for their organization and assign them to the users. They 

should be able to map the various privileges to the role and thus control “who can see what and who can do 

what” in the system. 

These tenant specific access control policies should be remembered as meta data, which then should be 

enforced dynamically during run time, depending on the context of the user and tenant. 

4.2  Dynamic Data scope policies 

Often it will be needed to put a boundary on the data that can be accessed by a specific role. For example a 

Finance Manager should be able to see data only related to his division, or a HR manager should administer 

the application only for employees located in say 3 locations assigned to him.  

In such scenarios the variable based on which the data scope is defined (Example division, location) could 

itself be a tenant specific master that the tenant could have created and customized for their organization. 

So the mapping of the Data scope policy should be done during run time by pulling up the tenant specific 

master data. The power user would be able to map them as one of the data scope conditions. 
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4.3  Single Sign on 

Many tenants will have their own internal identity management and user authentication system. It should be 

possible to integrate the User authentication of the SaaS application with the authentication system of each 

tenant through federated authentication. This should follow the standards provided by the SAML protocol. 

4.4  Tenant – Sub tenant Hierarchy 

While each tenant is a group of users set up and managed independent of the other tenants, there needs to 

be a hierarchy among the tenants. For example a nodal agency could be a parent tenant and multiple 

agencies below it could be set up as child tenants. The child tenant in turn can have further smaller 

contractors who could be sub-tenants. And users could be created within these sub tenants. 

 All the customization, configuration and access control settings done by the Power Users should be aware of 

the Tenant – Sub tenant hierarchy, and these settings / configurations should automatically roll down for the 

child tenants.   

Users can also be created with access to multiple tenant’s data. This is generally required by members of 

service teams that look at data across Tenants for an unified view or for reporting. Permission from the 

respective Tenants should be obtained before activating such users. 

4.5  Tenant Configuration Templates 

Tenant specific configurations could be set up as a template and these have to be automatically rolled down 

to all the Child tenants. Child tenants could be allowed to selectively customize their own settings and these 

will be automatically rolled down to downstream tenants. 

5.0  Other NFRs 

Some of the other NFRs are mentioned below in brief. 

5.1  Notification 

Should support FTP and email notifications, both in instant and batch mode. The templates for notification 

(at tenant level) should be customized by the Power user through the UI. 

5.2  Schedulers 

Time and Event based schedulers should be available as services, which can be used in the business 

application. 

5.3  Auditing 

The system should support Auditing Services, where audit trail of any transaction or event could be activated 

by simply calling a service. 
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5.4  Metering  

Metering of events and transactions will be required and this can be used to set usage quota for each tenant 

/ user group.  This should be tied in to the access control system.  

5.5  Usage Auditing 

This will be used to monitor the usage level / pattern of the various system components by different user 

groups. The data can be later used for Product Analytics. 

5.6  Module & Feature provisioning 

Not all modules and features should be accessible to all the user groups / tenants. A higher level 

administrator (SaaS Provider / Parent Tenant) should be able to control which modules and features of the 

application are accessible by which tenant. 

5.7  Pre and Post Processors and Policy Injection 

The system architecture and plumbing layers should support pre and post processors and policy injection 

mechanisms that are also tenant aware / tenant specific. 

5.8  Logging and Exception Management 

Tenant wise Logging and Exception management will help in tracing and trouble shooting tenant specific 

problems. 

5.9  Master data and Pick up lists Management 

Master data and Pick up lists created for each tenant should be rolled down to sub tenants, but should 

remain customizable by each tenant. 

6.0  NFR Stack Design 

A piece meal approach of building the NFRs described in the previous sections, will lead to inconsistency. 

Different developers will deal with these issues differently. Multiple applications requiring the same NFRs are 

often built ground up, following different approaches. Maintenance and Support of such applications also 

become expensive. 

Traditional on-premise applications built for a specific user group (Single tenant architecture) have an NFR 

overhead of 10-20%. This means in a 100 people month project, 10-20 people months are spent on NFRs. 

Whereas in Multi-tenant SaaS applications, the time and cost overheads associated with NFRs could be as 

high as 30-50% of the total development effort. That is, in a 100 people month project, 30-50 people months 

have to be spent on NFRs.  
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Ideally, NFRs have to be handled at the architectural and framework level. A Strong foundation stack or 

framework (NFR Stack or Engineering Stack) can be built and maintained independently. Using this, 

developers can focus on building domain specific functionalities instead of struggling with the plumbing and 

engineering aspects. 

The NFR stack / framework should be loosely coupled with the functionality layer. The SaaS provider should 

be able to maintain and upgrade the NFR stack / framework independent of the domain specific 

functionalities.  

The SaaS provider should also be able to re-use the NFR stack / framework for other SaaS applications. This 

ensures consistency and quality across multiple applications while reducing overall cost of ownership.  

While building or buying such an NFR Stack / Framework, care should be taken that the SaaS provider retains 

ownership and control over the entire application stack both technically and strategically. Vendor lock in or 

platform lock in should be avoided. 
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A Typical NFR Stack / Framework for a Multi-tenant SaaS Application 
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