

Cello How-To Guide

Business Events

2

Business Events

Business Events

Contents
1 CelloSaaS Event System ... 3

1.1 Event Types... 3

1.2 Create Event ... 3

1.3 How to raise the events in the system .. 5

1.3.1 InProc Environment ... 6

1.3.2 Web Service Enviroment ... 6

1.4 Mapping Content Template to an Event ... 7

1.5 To Create and Register Job .. 7

1.6 To create, delete, fetch the Job details .. 8

1.7 Mapping Jobs to Event ... 8

1.8 Event and Job Audit APIs ... 8

1.9 Event Workflow Job Handler ... 9

1.10 To map Workflow Creation Job to an event ... 9

1.11 Mapping Workflow Job to an Event .. 10

1.12 Passing Workflow input ... 10

1.13 Create Workflow input finder class .. 10

1.14 Introduction to Event Audit ... 11

1.15 To fetch Event Audit Details via code ... 12

Contact Information ... 14

3

Business Events

Business Events

1 CelloSaaS Event System
CelloSaaS Event system provides the application to run various jobs as per the tenants need in the

occurrence of the system event. “System Event” is any event of interest that happens in the application that

requires special attention, like Addition / Update / removal of an Employee, order confirmation etc. The

developer only needs to identify various events that must be raised in the system and uses the CelloSaaS

Event API to raise them. At runtime the tenant admin can configure what job must run when the event

happens, and this is configurable via the user interface. The various jobs that the tenant may require may be

thought through and should register it with CelloSaaS so that the tenant can pick one.

By default CelloSaaS provides you with a Job named “Workflow Creation Job” which can be mapped to any

event through the UI. Once mapped to an Event this job will create a workflow instance and start it (More

information is on the section “Event Workflow handler”.

Note: Events are global to all tenants. Only the jobs mapped to an event are tenant based.

Events can be managed through User Interface via Product Admin login which is a onetime process.

1.1 Event Types
CelloSaaS has two types of events.

1) Automatic CURD events

These events will be raised automatically when the entity is created, updated and deleted.

Need to follow the below naming convention for this event. }}

 Create Event – {{entity Id}}_Created Ex: Employee_Created

 Update Event – {{entity Id}}_Updated Ex: Employee_Updated

 Delete Event – {{entity Id}}_Deleted Ex: Employee_Deleted

2) Custom events

Developer need to raise the events based on their business need.

1.2 Create Event
The Event can be created as follows. Go to Mange Events -> Manage Events

To create new event, right click the default icon.

4

Business Events

Business Events

After clicking the Add Event menu the following screen will appear.

In the above screen, the selection of template is optional. If the template is required, then create the

template.

5

Business Events

Business Events

Tip: Since the events are created and are constant, the event ids can be maintained within the code so that

they can be accessed uniformly throughout the application in a consistent fashion.

public class EventConstants
{
 public const string EmployeeAditionEvent = "FD9E31D8-EA53-40DE-9453-147DF9BB5390";
[or]
 public const string EmployeeAdditionEvent = "Employee Addition";
}

1.3 How to raise the events in the system
The following sample demonstrates about how to raise an event when any employee is created. Uses the

event Id or event name while register the event.

Object and XML Mode

Cello event system supports, both the entity placeholders and xml placeholders. Entity placeholders are used
in inproc mode and xml placeholders is used in WCF mode.

Mapping Template

Details of mapping via UI

In XML Mode, the palceholders used needs to be as below

1. SubjectXmlValue
2. ContextXmlValue
3. TargetXmlValue

public void AddEmployee(Employee entity)

{

 // your code to create an employee

 // once successful then raise the event

 EventRegisterProxy.RegisterEvent(new Event

 {

 EventId = EventConstants.EmployeeAditionEvent,

 TenantId = UserIdentity.TenantID,

 UserId = UserIdentity.UserId,

 SubjectType = "Employee",

 SubjectXmlValue = entity.SerializeToXml()

 });

}

In object mode, the placeholders used needs to be as below

6

Business Events

Business Events

1. SubjectValue
2. ContextValue
3. TargetValue

public string AddEmployeeDetails(EmployeeDetails employeeDetails)
{

/* Write the Logic to adding employee details*/
//To log the event
EventRegisterProxy.RegisterEvent(new Event
{

EventId = EventConstant.AddEmployeeEventId,
TenantId = UserIdentity.TenantID,
UserId = userDetailsId,
SubjectType = "EmployeeDetails",
SubjectId = employeeDetails.Identifier,
SubjectValue = employeeDetails

});
return employeeDetails.Identifier;

}

These placeholder values will be used in template processing. It helps the template engine to replace the
placeholder with the corresponding values.

When the above code is executed, the CelloSaaS Event System will run the jobs configured by the Tenant

against this particular event based on the targeted schedule.

The jobs are queued in database and run in batch mode according to the priority by the CelloSaaS Event

Scheduler Windows Service to improve the performance. The processing of the new events, number of

events [Example: 5000], frequency etc] will be read from the configuration file. All the events / jobs are

audited by CelloSaaS and are made available from the User Interface.

1.3.1 InProc Environment
This environment is referring to the in process service calls that are being made from the application. In this

mode or environment, the data that can be used are C# objects or they can be serialized in XML format and

then persisted as event data.

SubjectValue / ContextValue / TargetValue can contain any C# object.

1.3.2 Web Service Enviroment
SubjectXmlValue / ContextXmlValue / TargetXmlValue will contain the serialized data of the business object

as the object data is represented as XML format in web services. Persistence of the data is easy and the end

user needs to use XPath expression to replace the placeholders in the template content. These data can be

used in both WCF and InProc environment.

7

Business Events

Business Events

SubjectId / ContextId / TargetId contain user friendly string to facilitate easy searching by the end user via UI.

The events can be mapped to a content template by the tenant via user interface at runtime. This enables

the event audit log to be used like Activity Stream. So instead of viewing raw event audit, you can view

meaningful information.

1.4 Mapping Content Template to an Event

[Mapping Content Template to an Event]

1.5 To Create and Register Job

To Create custom Jobs follow the below steps.

Create a class implementing from CelloSaaS.EventScheduler.EventPublishingEngine.IJob interface

public class SampleJob : CelloSaaS.EventScheduler.EventPublishingEngine.IJob

{

 public void Execute(Event eventParameter)

 {

 // write your business logic here

 }

}

Create job details in DB using following script or ISchedulerService methods..

INSERT INTO
[dbo].[Jobs]([Job_Name],[Job_Type],[Job_Description],[Job_CreatedBy],[Job_CreatedOn],[Job_Status])

VALUES ('Sample Job', 'SampleApp.SampleJob,SampleApp','Job description','3398f837-b988-4708-999d-
d3dfe11875b3',GETDATE(),1)

Job_Type Value should be in this format: [FullNamespace.TypeName, AssemblyName]

8

Business Events

Business Events

1.6 To create, delete, fetch the Job details
interface CelloSaaS.EventScheduler.ServiceContracts.ISchedulerService

{

/// This service will add a new job record

string AddJob(Job job);

/// This service will delete the given job id

void DeleteJob(string jobId);

/// This method fetches the job details for the given job id

Job GetJob(string jobId);

}

1.7 Mapping Jobs to Event
Use the below APIs to map jobs to events. CelloSaaS provides a default Workflow Job which can be mapped

to any Event via UI. If necessary the application developer can modify the user interface to display/restrict

the available jobs to the user.

interface CelloSaaS.EventScheduler.ServiceContracts.IEventSchedulerService

{

/// Adds the given job to the event.

void AddEventJob(string eventId, string jobId, string tenantId);

/// Deletes the job from the event.

void DeleteEventJob(string eventId, string jobId, string tenantId);

/// This method will search for the jobs mapped to the given event.

Dictionary<string, Job> GetJobs(string eventId, string tenantId);

}

1.8 Event and Job Audit APIs
interface CelloSaaS.EventScheduler.ServiceContracts.IEventAuditService

{

/// Get ActivityEventLog details by eventId,tenantid

Dictionary<string, Event> GetEventAudits(string eventId, string tenantId);

/// Get all ActivityEventLog details for the tenantId.

Dictionary<string, Event> GetEventAuditsByUserId(string userId);

/// Searches the event audit details.

9

Business Events

Business Events

EventAuditSearchResult GetEventAuditDetails(EventAuditSearchCondition

eventAuditSearchCondition);

}

interface CelloSaaS.EventScheduler.ServiceContracts.IJobAuditService

{

/// Searches the job audits with the given conditions.

JobAuditSearchResult SearchJobAudits(JobAuditSearchCondition searchCondition);

}

The returned Event object will contain the template content if mapped in the “TransformedDescription”

property. The template content text can contain place holders which will be replaced with the object value.

More information on placeholders is in the Content Template Section.

1.9 Event Workflow Job Handler
CelloSaaS by default provides a Job named “Workflow Creation Job” which can be mapped to any event via

UI or API. Once mapped, whenever the event occur it creates the given Workflow Instance and starts the

workflow.

1.10 To map Workflow Creation Job to an event
EventSchedulerProxy.AddEventJob(eventId, "ab860f9a-74b4-e111-98c8-000000000000",

UserIdentity.TenantID);

WFJobParameter wfJobParam = new WFJobParameter();

wfJobParam.WFName = ”Name of the workflow”;

wfJobParam.MapIdXPath = ”Xpath/to/Mapid”;

Note: MapIdXpath will be obtained from the Event Xml. So mapId need to be passed when raising the event.

eg. use SubjectId or ContextId or TargetId, etc to store the mapId.

var jparam = new JobParameters

 {

 EventId = eventId,

 JobId = "ab860f9a-74b4-e111-98c8-000000000000",

 EventJobParameter = wfJobParam,

 TenantId = UserIdentity.TenantID,

 CreatedBy = UserIdentity.UserId,

 Status = true

 };

JobParameterServiceProxy.AddJobParameter(jparam);

Instead of using the above code, default UI is provided to map this job.

10

Business Events

Business Events

1.11 Mapping Workflow Job to an Event

[Mapping Workflow Job to an Event.]

1.12 Passing Workflow input

To create a workflow instance you need a mapId and Wfinput object. The default WFEventHandler Job will

create the workflow instance using the mapId got from MapIdXPath and the wfInput object will be obtained

from WFInputFinder associated with Workflow.

1.13 Create Workflow input finder class

public class TestWFInputFinder : IWorkFlowInputFinder

 {

 public Dictionary<string, IWorkflowInput> GetMappingObjects(List<string> mapIds, string workFlowId,

string tenantId)

 {

 var result = new Dictionary<string, IWorkflowInput>();

 // your business logic to form IWorkflowInput

 return result;

 }

 }

11

Business Events

Business Events

Associate this with your Workflow in database. [dbo].[WorkFlow].WFInputFinderType = “AssemblyName,

FullTypeName”;

Note: - More information on WFInputFinder refer http://techcello.com/downloads/how-

to/how_to_wf_inputs_and_finders.pdf

You might need to add this assembly dll and all referenced dll's and configuration changes to CelloSaaS Event

Windows Service.

So the WFEventHandler gets the mapId from MapIdXPath and wfInput by calling GetMappingObjects()

method and creates the workflow instance.

1.14 Introduction to Event Audit

Event Audit can be logged for every event in cello as well as at the application level.

Let’s take the employee management system, the following events can be logged

1. When an employee/user was created.

2. When the user log in or logout from the system.

3. When the user’s password change in the system.

4. When the user is activated/deactivated.

5. When a tenant is created or approved.

To log the event, the following step needs to be followed.

1. Create required Event through UI

2. Create Template for that event, if it requires

3. Call the Event Register API to log the event.

Use Monitor-> Events navigation to view all raised events.

Viewing the logged events via UI

The logged event audit can be viewed as follows.

http://techcello.com/downloads/how-to/how_to_wf_inputs_and_finders.pdf
http://techcello.com/downloads/how-to/how_to_wf_inputs_and_finders.pdf

12

Business Events

Business Events

You can search the event audit based on the following filters. Event Name, User Name(user Id), Subject Id,
Subject Type, Target Id, Target Type, Context Id, Context Type, From Log Date, To Log Date and Event
Status.

1.15 To fetch Event Audit Details via code

Namespace : CelloSaaS.EventScheduler.ServiceProxies
Class : EventAuditServiceProxy
Method: public static EventAuditSearchResult GetEventAuditDetails(EventAuditSearchCondition
eventAuditSearchCondition).

 Here, EventName is the name of the event and the UserId is the logged in user’s UserId.

 SubjectId/ContextId/TargetId, SubjectType/TargetType/ContextType contains user friendly string to
facilitate easy searching by the end user in UI.

13

Business Events

Business Events

 FromLogTime / ToLogTime represent the event logged time. By using this, users can get the events
audits between the given time frames.

Sample Code

public EventAuditSearchResult GetEventAudit(EventAuditSearchCondition eventAuditsearchcondition, int?
page, string sortString, string sortDirection, int pageSize = 10)
{

 /* Write logic for set the audit search condition */

 //To get the Event audit details
 eventAuditSearchResult = EventAuditServiceProxy.GetEventAuditDetails(eventAuditsearchcondition);

 return eventAuditSearchResult;
}

14

Business Events

Business Events

Contact Information
Any problem using this guide (or) using Cello Framework. Please feel free to contact us, we will be happy to

assist you in getting started with Cello.

Email: support@techcello.com

Phone: +1(609)503-7163

Skype: techcello

mailto:support@techcello.com

